# ECMWF analysis of the AIRS focus-day 20 July 2002

Tony McNally / Phil Watts / Marco Matricardi

- Introduction
- Detection of clear channels
- Clear-sky departure statistics
- preliminary 3DVAR assimilation results
- status and plans

### ECMWF cloud detection algorithm for AIRS

- •Exploits NWP model accuracy (particularly in mid-upper trop constrained by AMSUA)
- •Aims at dynamically finding clear channels rather than completely clear locations
- So far validated with simulated cloudy AIRS radiances
- Extendable to CrIS / IASI

Observed cloudy spectra and simulated clear-sky (NWP) spectra



Channels split into bands (LW/SW/6m/O3) by cloud effect



Non-linear transformation to cloud-ranked channel space



Pattern recognition algorithm (currently digital filter used)

#### ECMWF cloud detection scheme

(example for LW band from AIRS focus day)



#### Distribution of data flagged clear

AIRS channel **145** (*14.5micron similar to HIRS channel 3 100hPa*)



AIRS channel **226** (13.5micron similar to HIRS channel 5 600hPa)



AIRS channel **1694** (6.7micron similar to HIRS channel 12 400hPa)



AIRS channel 787 (11 micron similar to HIRS



AIRS channel **145** (14.5micron similar to HIRS channel 3 100hPa)



AIRS channel 1694 (6.7micron similar to HIRS channel 12 UTH)



AIRS channel 226 (14.0micron similar to HIRS channel 5 600hPa)



AIRS channel 787 (11micron similar to HIRS channel 8 window)



#### Frequency of AIRS channels flagged CLEAR

(Longwave Band only)



#### Frequency of AIRS channels flagged CLEAR

(Whole AIRS spectrum)



### AIRS clear-sky radiance departures from the ECMWF model

The ECMWF model fields (T/Q/O3) are interpolated to the AIRS locations and are valid to within 1hour of the observation time.

Clear-sky radiances for each AIRS channel are then computed using the RTTOV radiative transfer model using SRFs supplied by L.Strow.

The statistics are:

(Observed AIRS radiance) minus (ECMWF-RT)









## Preliminary assimilation of real AIRS radiances

#### Experimental details:

- •Assimilation scheme : *3DVAR*
- •Assimilation window : 6hrs
- •Model resolution : *TL159 (60 levels)*
- •Data used : *All conventional* + *AIRS radiances*
- •AIRS channel selection : *clear only from 281 NRT*
- •Observation errors : 1.0K in each channel

### Channel use in 3DVAR assimilation based on clear flags



### Temperature increments in ECMWF 3DVAR due to AIRS clear channel radiance assimilation

Temperature increments in (K) at 200hPa for 2002-07-20 for 06z (red orange positive / green-blue negative)

The plots shows the active use of channels above low cloud causing temperature adjustments to the analysis in the mid-upper troposphere







## Summary of results for AIRS focus-day

- •Cloud detection of clear AIRS channels working well but requires detailed validation with MODIS imagery
- •Instrument radiance data generally simulated very well from NWP model using RTTOV radiative transfer (soon to be upgraded to 90 levels + new spectroscopy)
- •Preliminary assimilation looks very encouraging, but sensible NWP impact trials pending NRT data flow and final SRFs.

## Current schedule for AIRS assimilation at ECMWF

- •Focus day (2002-07-20) data released by NASA in late August
- Analysis of focus day data (in progress)
- •Initial re-tune of RT model (complete)
- •NRT data activated by NESDIS ORA (October 2002)
- Activation of real-time monitoring results on ECMWF WWW
- •Second (final?) retune of RT model from NASA (end of 2002)
- •Residual bias evaluation / correction
- •NRT assimilation to evaluate NWP performance (spring 2003)
- •Day-1 (conservative) Operational assimilation (late spring 2003)



#### **Notes:**

i<sub>low</sub> is the channel ranked most sensitive to cloud

- •the gradient is evaluated over (+1) and (+5) steps to avoid stopping as local max/min. The threshold is 0.001? The gradient is checked negative over cold surface and positive over warm surfaces.
- •window channels are excluded that show surface (e.g. emissivity) features more than a monotonic cloud signal and cause dangerous termination when the clear-sky emission is poorly computed.
- •the departure threshold is + / 0.5K depending on surface type